A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold Mp1 on a Late Endosomal/Lysosomal Compartment

نویسندگان

  • Winfried Wunderlich
  • Irene Fialka
  • David Teis
  • Arno Alpi
  • Andrea Pfeifer
  • Robert G. Parton
  • Friedrich Lottspeich
  • Lukas A. Huber
چکیده

We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types. In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro.The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p14–MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis

The extracellular signal-regulated kinase (ERK) cascade regulates proliferation, differentiation, and survival in multicellular organisms. Scaffold proteins regulate intracellular signaling by providing critical spatial and temporal specificity. The scaffold protein MEK1 (mitogen-activated protein kinase and ERK kinase 1) partner (MP1) is localized to late endosomes by the adaptor protein p14. ...

متن کامل

Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes.

Signaling pathways in eukaryotic cells are often controlled by the formation of specific signaling complexes, which are coordinated by scaffold and adaptor proteins. Elucidating their molecular architecture is essential to understand the spatial and temporal regulation of cellular signaling. p14 and MP1 form a tight (K(d) = 12.8 nM) endosomal adaptor/scaffold complex, which regulates mitogen-ac...

متن کامل

A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes

Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Late endosomal traffic of the epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling.

Mitogen-activated protein kinase (MAPK) signaling is regulated by assembling distinct scaffold complexes at the plasma membrane and on endosomes. Thus, spatial resolution might be critical to determine signaling specificity. Therefore, we investigated whether epidermal growth factor receptor (EGFR) traffic through the endosomal system provides spatial information for MAPK signaling. To mislocal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2001